

{電気•応用}音響研究会

波面合成法を用いた近接三次元音場再生の理論的研究

◎木村敏幸, 山肩洋子, 勝本道哲

超臨場感コミュニケーション

- 立体テレビ
 - リビングで鑑賞
 - 目の前に対象物がある
- 立体遠隔通信会議
 - 同じ場所で会議
 - 目の前に相手がいる
- ・ 波面合成法に着目

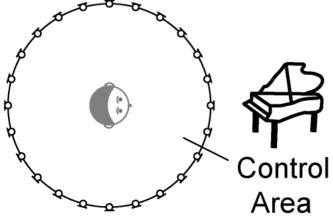
立体映像の将来イメージ

従来システムとの比較

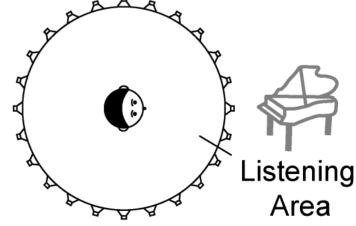
• 従来システム

- 理論的に検討されている
- 聴取者の周りにスピーカを配置
- 音源の周りで音が聞けない

Original Sound Field



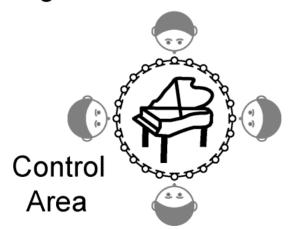
Reproduced Sound Field



従来システムとの比較

- 提案システム
 - 音源の周りにスピーカを配置
 - 音源の周りで音が聞ける
 - 理論的に検討されていない

Original Sound Field



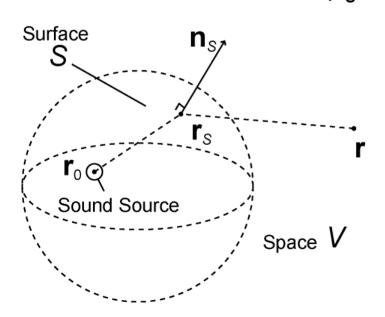
Reproduced Sound Field

本報告の目的

- ・波面合成法による近接三次元音場再生技術の提案
 - 双極子制御手法
 - 指向点制御手法
- ・ 提案手法の性能評価
 - 手法
 - 計算機シミュレーション
 - 評価基準
 - 平均二乗音圧(音圧分布)
 - ・音響インテンシティ(音像の定位方向)

波面合成法

- Kirchhoff-Helmholtz積分方程式
 - 連続境界面S上で2種類の音源を再生すれば、 空間V上の音圧 $P(\mathbf{r},\omega)$ が合成される
 - 大きさ∂P(r_s,ω)/∂n_sのモノポール音源
 - 大きさ-P(r_s, ω)のダイポール音源



$$P(\mathbf{r},\omega) = \frac{1}{4\pi} \oint_{S} \left\{ \frac{\partial P(\mathbf{r}_{S},\omega)}{\partial \mathbf{n}_{S}} \frac{e^{-jk|\mathbf{r}-\mathbf{r}_{S}|}}{|\mathbf{r}-\mathbf{r}_{S}|} \right\}$$

$$k$$
: 波数 $-P(\mathbf{r}_S, \omega) \frac{\partial}{\partial \mathbf{n}_S} \left(\frac{e^{-jk|\mathbf{r} - \mathbf{r}_S|}}{|\mathbf{r} - \mathbf{r}_S|} \right) dS$

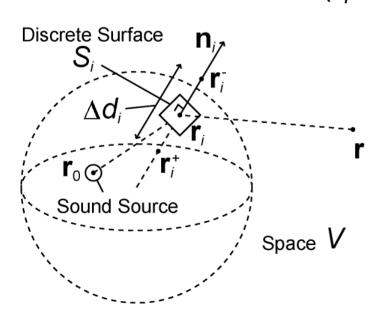
r: 空間V上の点の位置ベクトル

 \mathbf{r}_{s} : 境界面S上の点の位置ベクトル

ns: rsにおける単位法線ベクトル

波面合成法

- ・ 境界面の離散化
 - -境界上のM個の点 \mathbf{r}_i で2種類の音源を再生すれば、空間V上の音圧 $P(\mathbf{r},\omega)$ が合成される
 - 大きさ∂P(r_i, ω)/∂n_iのモノポール音源
 - 大きさ-P(r_i, ω)のダイポール音源



$$P(\mathbf{r},\omega) = \frac{1}{4\pi} \sum_{i=1}^{M} \left\{ \frac{\partial P(\mathbf{r}_{i},\omega)}{\partial \mathbf{n}_{i}} \frac{e^{-jk|\mathbf{r}-\mathbf{r}_{i}|}}{|\mathbf{r}-\mathbf{r}_{i}|} \right\}$$

$$-P(\mathbf{r}_{i},\omega)\frac{\partial}{\partial\mathbf{n}_{i}}\left(\frac{e^{-jk|\mathbf{r}-\mathbf{r}_{i}|}}{|\mathbf{r}-\mathbf{r}_{i}|}\right)\right\}\Delta S_{i}$$

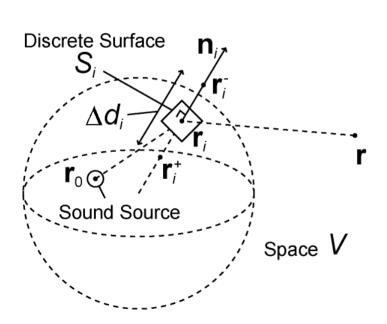
r: 空間V上の点の位置ベクトル

r;: 境界面S;における位置ベクトル

n;: r,における単位法線ベクトル

双極子制御手法の導出

- 積分方程式に近似を導入
 - 音圧傾度を制御点近傍の音圧差分で近似
 - 音圧を制御点近傍の音圧平均で近似

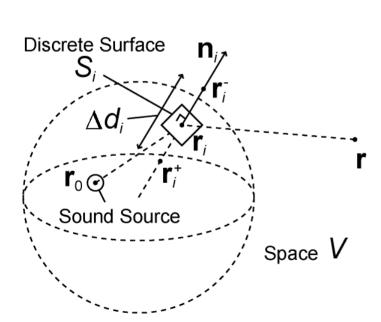


$$\frac{\partial P(\mathbf{r}_{i}, \omega)}{\partial \mathbf{n}_{i}} \approx \frac{P(\mathbf{r}_{i}^{+}, \omega) - P(\mathbf{r}_{i}^{-}, \omega)}{\Delta d_{i}}$$

$$P(\mathbf{r}_i, \omega) \approx \frac{P(\mathbf{r}_i^+, \omega) + P(\mathbf{r}_i^-, \omega)}{2}$$

双極子制御手法の導出

- ・さらに近似を導入
 - ダイポール音源をモノポール音源で近似
 - モノポール音源をダイポール音源で近似

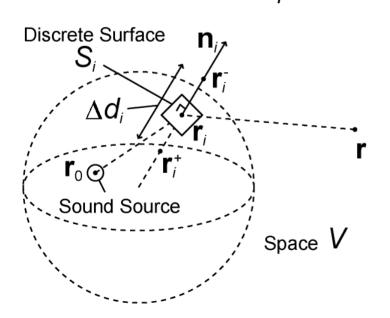


$$\frac{\partial}{\partial \mathbf{n}_{i}} \left(\frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \right) \approx \frac{1}{\Delta d_{i}} \left(\frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}^{+}|}}{|\mathbf{r} - \mathbf{r}_{i}^{+}|} - \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}^{-}|}}{|\mathbf{r} - \mathbf{r}_{i}^{-}|} \right)$$

$$\frac{e^{-jk|\mathbf{r}-\mathbf{r}_i|}}{|\mathbf{r}-\mathbf{r}_i|} \approx \frac{1}{2} \left(\frac{e^{-jk|\mathbf{r}-\mathbf{r}_i^+|}}{|\mathbf{r}-\mathbf{r}_i^+|} + \frac{e^{-jk|\mathbf{r}-\mathbf{r}_i^-|}}{|\mathbf{r}-\mathbf{r}_i^-|} \right)$$

双極子制御手法の導出

- ・ 双極子制御手法の公式
 - M個の点 \mathbf{r}_i の近傍で2種類の音源を再生すれば、空間V上の音圧 $P(\mathbf{r},\omega)$ が合成される
 - ・ 位置 \mathbf{r}_i で大きさ $P(\mathbf{r}_i^+,\omega)$ のモノポール音源
 - 位置 \mathbf{r}_i^+ で大きさ $-P(\mathbf{r}_i^-,\omega)$ のモノポール音源



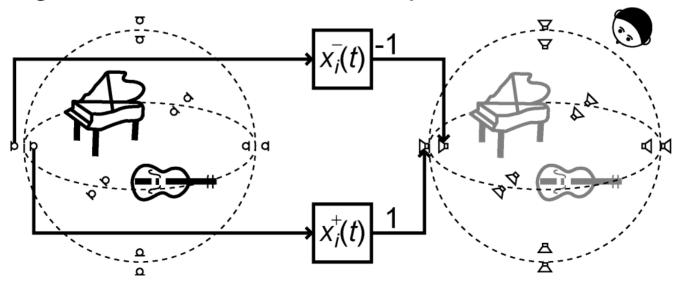
$$P(\mathbf{r}, \omega) = \frac{1}{4\pi} \sum_{i=1}^{M} \left\{ P(\mathbf{r}_{i}^{+}, \omega) \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}^{-}|}}{|\mathbf{r} - \mathbf{r}_{i}^{-}|} - P(\mathbf{r}_{i}^{-}, \omega) \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}^{-}|}}{|\mathbf{r} - \mathbf{r}_{i}^{+}|} \right\} \frac{\Delta S_{i}}{\Delta d_{i}}$$

双極子制御手法

- 1. 境界面上のマイクロホン対で音を収録
- 2. 境界面上のスピーカ対で音を再生
- 3. アレイの外側の音場が再現
- 4. アレイの内側で音が鳴っているように感じる

Original Sound Field

Reproduced Sound Field

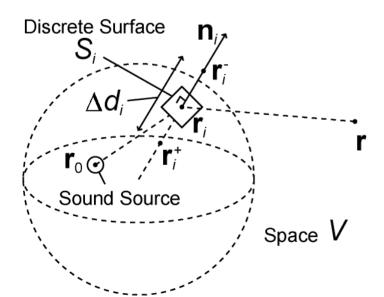


指向点制御手法の導出

・ 音圧傾度に別の近似を導入

$$\frac{\partial P(\mathbf{r}_{i}, \omega)}{\partial \mathbf{n}_{i}} = \frac{\partial}{\partial \mathbf{n}_{i}} \left(\frac{Ae^{-jk|\mathbf{r}_{i}-\mathbf{r}_{0}|}}{|\mathbf{r}_{i}-\mathbf{r}_{0}|} \right)$$

$$= -\frac{Ae^{-jk|\mathbf{r}_{i}-\mathbf{r}_{0}|}}{|\mathbf{r}_{i}-\mathbf{r}_{0}|} \left(\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{0}|} + jk \right) \cos(\mathbf{n}_{i}, \mathbf{r}_{i}-\mathbf{r}_{0})$$



$$= -P(\mathbf{r}_i, \omega) \left(\frac{1}{|\mathbf{r}_i - \mathbf{r}_0|} + jk \right) \cos(\mathbf{n}_i, \mathbf{r}_i - \mathbf{r}_0)$$

$$\mathbf{r} \approx -jkP(\mathbf{r}_i,\omega)\cos(\mathbf{n}_i,\mathbf{r}_i-\mathbf{r}_0)$$

但し、
$$k \gg \frac{1}{|\mathbf{r}_i - \mathbf{r}_0|}$$

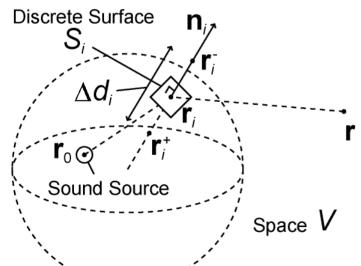
 $(\mathbf{n}_i, \mathbf{r}_i - \mathbf{r}_0)$: ベクトル $\mathbf{n}_i \geq \mathbf{r}_i - \mathbf{r}_0$ がなす角

指向点制御手法の導出

• ダイポール音源に別の近似を導入

$$\frac{\partial}{\partial \mathbf{n}_{i}} \left(\frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \right) = -\frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \left(\frac{1}{|\mathbf{r} - \mathbf{r}_{i}|} + jk \right) \cos(\mathbf{n}_{i}, \mathbf{r}_{i} - \mathbf{r})$$

$$\approx -jk \frac{e^{-jk|\mathbf{r}-\mathbf{r}_i|}}{|\mathbf{r}-\mathbf{r}_i|} \cos(\mathbf{n}_i, \mathbf{r}_i - \mathbf{r})$$



但し、
$$k \gg \frac{1}{|\mathbf{r} - \mathbf{r}_i|}$$

 (n_i,r_i-r) : ベクトル n_i と r_i -rがなす角

指向点制御手法の導出

- Fresnel-Kirchhoffの回折公式
 - -境界上のM個の点 \mathbf{r}_i で大きさ $P(\mathbf{r}_i,\omega)$ の指向性音源を再生すれば、空間V上の音圧 $P(\mathbf{r},\omega)$ が合成される

$$P(\mathbf{r}, \omega) = \frac{jk}{4\pi} \sum_{i=1}^{M} P(\mathbf{r}_{i}, \omega) \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \left\{ \cos(\mathbf{n}_{i}, \mathbf{r}_{i} - \mathbf{r}) - \cos(\mathbf{n}_{i}, \mathbf{r}_{i} - \mathbf{r}_{0}) \right\} \Delta S_{i}$$

$$\approx \frac{jk}{4\pi} \sum_{i=1}^{M} P(\mathbf{r}_{i}, \omega) \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \left\{ -\cos(\mathbf{n}_{i}, \mathbf{r} - \mathbf{r}_{i}) - 1 \right\} \Delta S_{i}$$

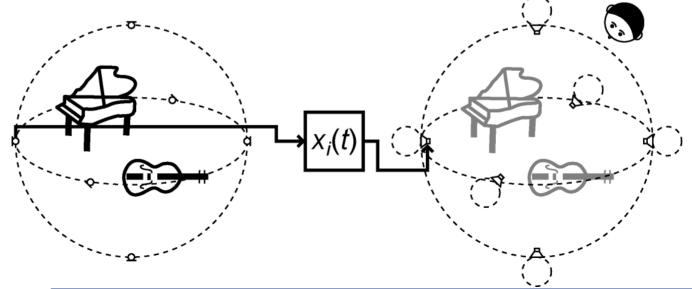
$$\approx \frac{jk}{4\pi} \sum_{i=1}^{M} D_{i} P(\mathbf{r}_{i}, \omega) \frac{e^{-jk|\mathbf{r} - \mathbf{r}_{i}|}}{|\mathbf{r} - \mathbf{r}_{i}|} \Delta S_{i}$$

指向点制御手法

- 1. 境界面上のマイクロホンで音を収録
- 2. 境界面上の指向性スピーカで音を再生
- 3. アレイの外側の音場が再現
- 4. アレイの内側で音が鳴っているように感じる

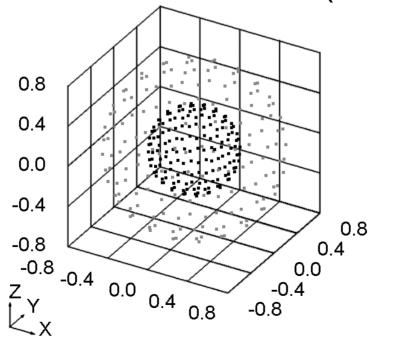
Original Sound Field

Reproduced Sound Field



制御•合成位置

- 制御点位置
 - 半径0.4mの球面上に162点(黒色)
- 合成点位置
 - 半径0.8mの球面上に162点(灰色)



音圧の合成(原音場)

- 音源 s(t)...振幅A, 周波数f のサイン波

$$s(t) = A \sin 2\pi f t$$

-音圧 $p_0(\mathbf{r}, f, t)$

$$p_0(\mathbf{r}, f, t) = \frac{1}{d_0} s \left(t - \frac{d_0}{c} \right) = \frac{A}{d_0} \sin \left\{ 2\pi f \left(t - \frac{d_0}{c} \right) \right\}$$

r: 合成点の位置ベクトル

 $d_0(=|\mathbf{r}-\mathbf{r}_0|)$: 音源から合成点までの距離

r₀: 音源の位置ベクトル

c: 音速

音圧の合成(双極子制御)

- i番目のマイクロホン対で収録した信号

$$x_{i}^{+}(t) = \frac{1}{d_{i0}^{+}} s \left(t - \frac{d_{i0}^{+}}{c} \right) = \frac{A}{d_{i0}^{+}} \sin \left\{ 2\pi f \left(t - \frac{d_{i0}^{+}}{c} \right) \right\}$$

$$x_{i}^{-}(t) = \frac{1}{d_{i0}^{-}} s \left(t - \frac{d_{i0}^{-}}{c} \right) = \frac{A}{d_{i0}^{-}} \sin \left\{ 2\pi f \left(t - \frac{d_{i0}^{-}}{c} \right) \right\}$$

 $d_{i0}^{+}(=|\mathbf{r}_{i}^{+}-\mathbf{r}_{0}|), d_{i0}^{-}(=|\mathbf{r}_{i}^{-}-\mathbf{r}_{0}|)$:

音源からi番目のマイクロホン対までの距離

r_i⁺, **r**_i⁻: *i*番目のマイクロホン対の位置ベクトル

$$\mathbf{r}_{i}^{+} = \mathbf{r}_{i} - \frac{\Delta d_{i}}{2} \mathbf{n}_{i}, \quad \mathbf{r}_{i}^{-} = \mathbf{r}_{i} + \frac{\Delta d_{i}}{2} \mathbf{n}_{i}$$

音圧の合成(双極子制御)

- 音圧 p(r, f, t)

$$p(\mathbf{r}, f, t) = \sum_{i=1}^{M} \left\{ \frac{1}{d_{i}^{-}} x_{i}^{+} \left(t - \frac{d_{i}^{-}}{c} \right) - \frac{1}{d_{i}^{+}} x_{i}^{-} \left(t - \frac{d_{i}^{+}}{c} \right) \right\}$$

$$= \sum_{i=1}^{M} \left[\frac{A}{d_{i}^{-} d_{i0}^{+}} \sin \left\{ 2\pi f \left(t - \frac{d_{i}^{-} + d_{i0}^{+}}{c} \right) \right\} \right]$$

$$- \frac{A}{d_{i}^{+} d_{i0}^{-}} \sin \left\{ 2\pi f \left(t - \frac{d_{i}^{+} + d_{i0}^{-}}{c} \right) \right\} \right]$$

M: スピーカ対の総数

 $d_i^+(=|\mathbf{r}-\mathbf{r}_i^+|), d_i^-(=|\mathbf{r}-\mathbf{r}_i^-|)$:

i番目のスピーカ対から合成点までの距離

音圧の合成(指向点制御)

-i番目のマイクロホンで収録した信号 $x_i(t)$

$$x_{i}(t) = \frac{1}{d_{i0}} s \left(t - \frac{d_{i0}}{c} \right) = \frac{A}{d_{i0}} \sin \left\{ 2\pi f \left(t - \frac{d_{i0}}{c} \right) \right\}$$

- 音圧 p(**r**, f, t)

$$p(\mathbf{r}, f, t) = \sum_{i=1}^{M} \frac{D_i}{d_i} x_i \left(t - \frac{d_i}{c} \right) = \sum_{i=1}^{M} \frac{D_i A}{d_i d_{i0}} \sin \left\{ 2\pi f \left(t - \frac{d_i + d_{i0}}{c} \right) \right\}$$

 $d_{i0}(=|\mathbf{r}_i-\mathbf{r}_0|)$: 音源からマイクロホンまでの距離

r;: i番目のマイクロホンの位置ベクトル

M: スピーカの総数

 $d_i(=|\mathbf{r}-\mathbf{r}_i|)$: スピーカから合成点までの距離

 D_i : i番目のスピーカの指向特性

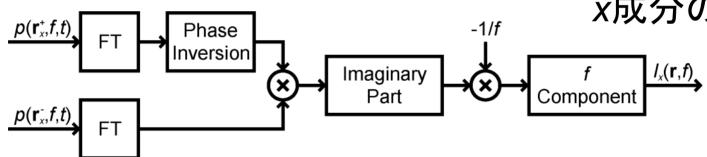
計算機シミュレーション条件

Source amplitude (A)	1
Source frequency (f)	125, 250, 500, 1000, 2000,
	4000, 8000, 16000 Hz
Source position (\mathbf{r}_0)	$(0, 0, 0)^T (0.3, 0, 0)^T$
	$(0, 0.3, 0)^T (0, 0, 0.3)^T$
Sound velocity (c)	340 m/s
Total number of control points (M)	162
Radius of control points (r)	0.4 m
Total number of synthesis points (N)	162
Radius of synthesis points (R)	0.8 m
Unit normal vector (n _i)	$\mathbf{r}_i/ \mathbf{r}_i $
Neighbor distance (Δ_i)	0.002 m
Directivity (D_i)	Omnidirectional,
	Unidirectional, Shotgun

音響インテンシティの算出

- 音響インテンシティ(ベクトル量)
 - 音圧と粒子速度の積
 - 音源探査などに利用される
- クロススペクトル法により算出

再生音場, x成分の場合

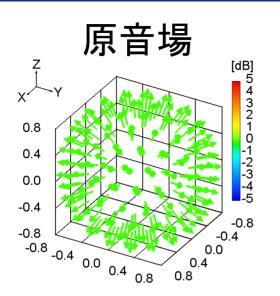


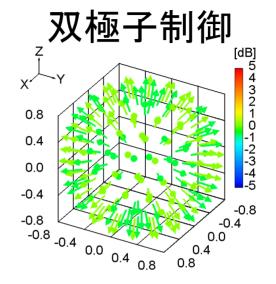
$$p(\mathbf{r}_{x}^{+}, f, t), p(\mathbf{r}_{x}^{-}, f, t): \mathbf{r}_{x}^{+}, \mathbf{r}_{x}^{-}$$
における音圧

$$\Delta = 0.001 \text{ m}$$
 $\mathbf{r}_{x}^{+} = \mathbf{r} + (\Delta, 0, 0)^{T}, \quad \mathbf{r}_{x}^{-} = \mathbf{r} - (\Delta, 0, 0)^{T}$

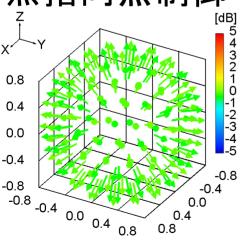
/_x(r, f): x成分の音響インテンシティ

ベクトル線図 (0, 0, 0), 1000Hz

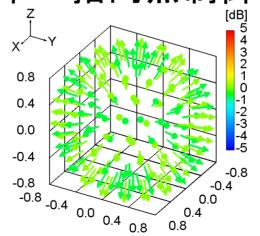


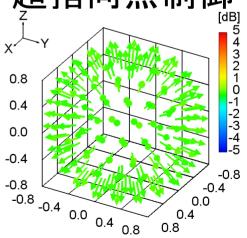


無指向点制御

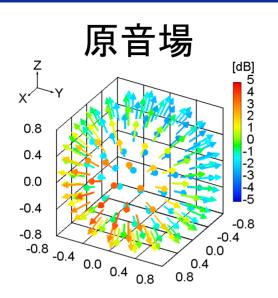


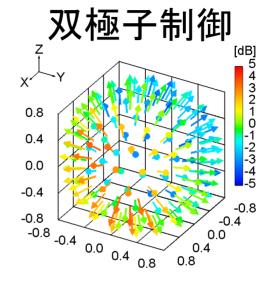
単一指向点制御



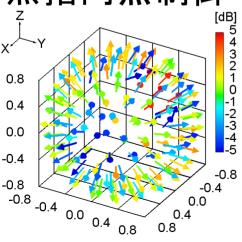


ベクトル線図 (0.3, 0, 0), 1000Hz

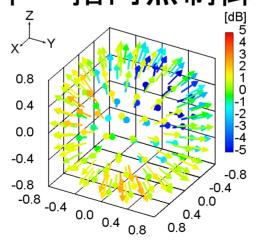


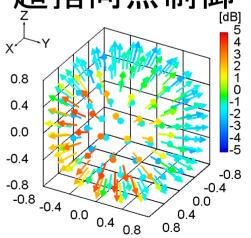


無指向点制御

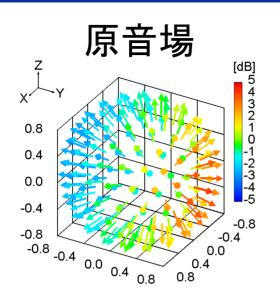


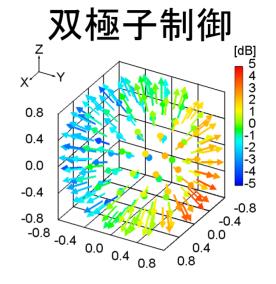
単一指向点制御



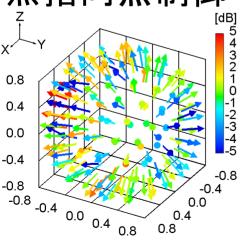


ベクトル線図 (0, 0.3, 0), 1000Hz

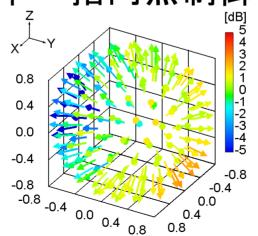


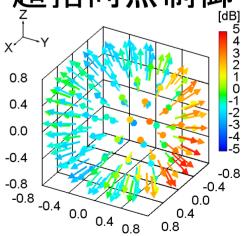


無指向点制御

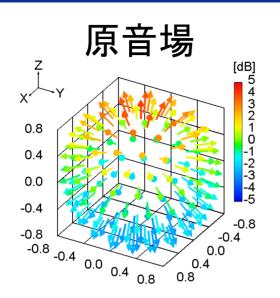


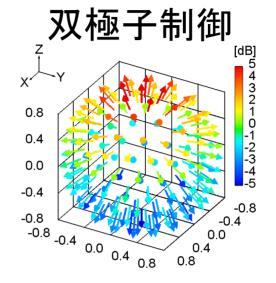
単一指向点制御



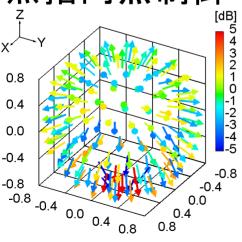


ベクトル線図 (0, 0, 0.3), 1000Hz

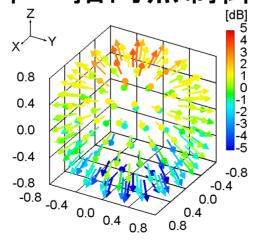


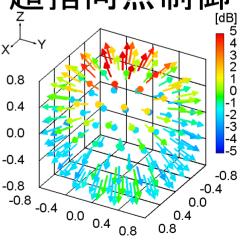


無指向点制御



単一指向点制御





定量評価

- ・ 平均二乗音圧のSNR
 - 音圧分布の違い

$$\operatorname{SNR}(f) = 10\log_{10} \frac{\sum_{\mathbf{r}} \{p_0(\mathbf{r}, f)\}^2}{\sum_{\mathbf{r}} \{p(\mathbf{r}, f) - p_0(\mathbf{r}, f)\}^2}$$

 $p_0(\mathbf{r}, f)$: 原音場の平均二乗音圧 $p(\mathbf{r}, f)$: 再生音場の平均二乗音圧

$$p_0(\mathbf{r}, f) = \sqrt{\int_0^1 \{p_0(\mathbf{r}, f, t)\}^2 dt}$$

$$p(\mathbf{r}, f) = \sqrt{\int_0^1 \left\{ p(\mathbf{r}, f, t) \right\}^2 dt}$$

定量評価

- インテンシティ方向誤差(IDE)*θ* (*f*)
 - 音像の定位方向の違い

$$\theta(f) = \sqrt{\frac{1}{N} \sum_{\mathbf{r}} \left[\cos^{-1} \left\{ \frac{\mathbf{I}(\mathbf{r}, f) \cdot \mathbf{I}_{0}(\mathbf{r}, f)}{|\mathbf{I}(\mathbf{r}, f)| |\mathbf{I}_{0}(\mathbf{r}, f)|} \right\} \right]^{2}}$$

 $I_0(\mathbf{r}, f) = \{I_{x0}(\mathbf{r}, f), I_{y0}(\mathbf{r}, f), I_{z0}(\mathbf{r}, f)\}^T$: 原音場の音響インテンシティ

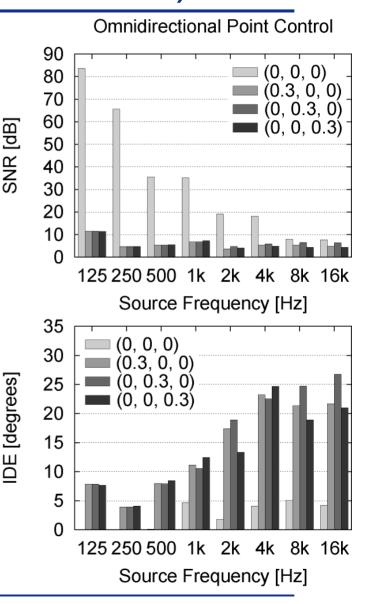
 $I(\mathbf{r}, f) = \{I_x(\mathbf{r}, f), I_y(\mathbf{r}, f), I_z(\mathbf{r}, f)\}^T$: 再生音場の音響インテンシティ

N(=162): 合成点の数

定量評価結果(無指向点制御)

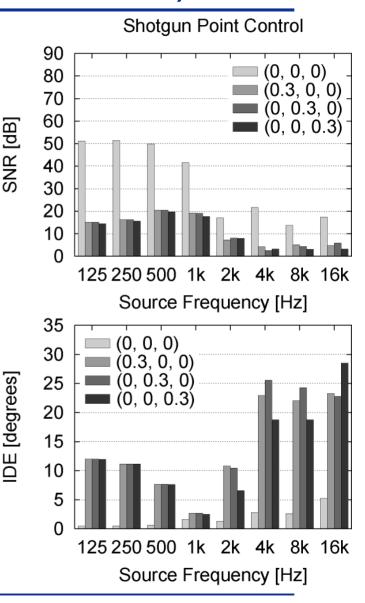
• 平均二乗音圧のSNR

- 全ての周波数…12dB以下 (音源が中心以外)
- 音圧分布が再現されてい ない
- インテンシティ方向誤差
 - 1000Hz以下...12.5度以下
 - 音像の定位方向はある程 度再現されている



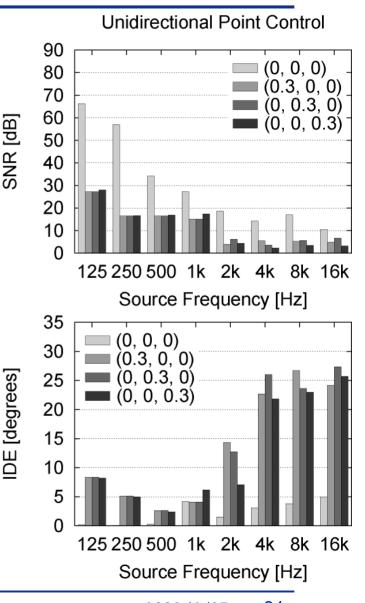
定量評価結果(超指向点制御)

- ・ 平均二乗音圧のSNR
 - 1000Hz以下...14.3dB以上
 - 音圧分布はある程度再現 されている
- インテンシティ方向誤差
 - 1000Hz以下...12.0度以下
 - 音像の定位方向はある程 度再現されている



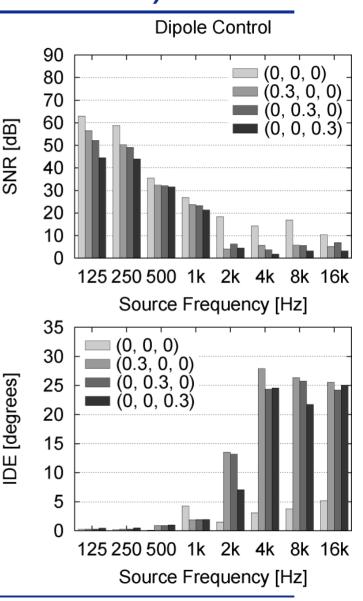
定量評価結果(単一指向点制御)

- ・ 平均二乗音圧のSNR
 - 1000Hz以下...15.0dB以上
 - 音圧分布はある程度再現 されている
- インテンシティ方向誤差
 - 1000Hz以下...8.4度以下
 - 音像の定位方向はある程 度再現されている



定量評価結果(双極子制御)

- 平均二乗音圧のSNR
 - 1000Hz以下...21.3dB以上
 - 音圧分布は十分に再現されている
- インテンシティ方向誤差
 - 1000Hz以下...4.3度以下
 - 音像の定位方向は十分に 再現されている



まとめ

- ・波面合成法による近接三次元音場再生技術の提案
- ・双極子制御手法は非常に性能が良い
- ・ 指向点制御手法はスピーカに指向性を設ければ性能が良い
- 今後の予定
 - システムの試作
 - 実環境における性能の評価
 - ・ 音響計測(音圧分布, 音響インテンシティ)
 - 主観評価実験(定位実験)

